Search results
Results From The WOW.Com Content Network
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption , evaporation , drying , precipitation , membrane filtration , and distillation .
Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.
Mass transfer in a system is governed by Fick's first law: 'Diffusion flux from higher concentration to lower concentration is proportional to the gradient of the concentration of the substance and the diffusivity of the substance in the medium.' Mass transfer can take place due to different driving forces. Some of them are: [12]
The Sherwood number (Sh) (also called the mass transfer Nusselt number) is a dimensionless number used in mass-transfer operation. It represents the ratio of the total mass transfer rate (convection + diffusion) to the rate of diffusive mass transport, [1] and is named in honor of Thomas Kilgore Sherwood. It is defined as follows
In the life sciences, mass flow, also known as mass transfer and bulk flow, is the movement of fluids down a pressure or temperature gradient. [1] As such, mass flow is a subject of study in both fluid dynamics and biology. Examples of mass flow include blood circulation and transport of water in vascular plant tissues. Mass flow is not to be ...
is the Fourier number for mass transport; is the mass diffusivity (m 2 /s) is the time (s) is the length scale of interest (m) The mass-transfer Fourier number can be applied to the study of certain time-dependent mass diffusion problems.
XRP aims to rapidly and accurately process money transfers around the world, potentially including the tokenzation of real-world assets into its transfer capabilities. Start Your Mornings Smarter!
Chilton–Colburn J-factor analogy (also known as the modified Reynolds analogy [1]) is a successful and widely used analogy between heat, momentum, and mass transfer.The basic mechanisms and mathematics of heat, mass, and momentum transport are essentially the same.