When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Octahedron - Wikipedia

    en.wikipedia.org/wiki/Octahedron

    A regular octahedron is an octahedron that is a regular polyhedron. All the faces of a regular octahedron are equilateral triangles of the same size, and exactly four triangles meet at each vertex. A regular octahedron is convex, meaning that for any two points within it, the line segment connecting them lies entirely within it.

  3. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    A similar technique can be applied to construct polyhedra with tetrahedral symmetry and octahedral symmetry. These polyhedra will have triangles or squares rather than pentagons. These variations are given Roman numeral subscripts denoting the number of sides on the non-hexagon faces: GP III (n,m), GP IV (n,m), and GP V (n,m).

  4. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    A convex polyhedron is a polyhedron that bounds a convex set. Every convex polyhedron can be constructed as the convex hull of its vertices, and for every finite set of points, not all on the same plane, the convex hull is a convex polyhedron. Cubes and pyramids are examples of convex polyhedra.

  5. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    A geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry, such that they have 6 triangles at a vertex, except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra, of which all but the smallest one (which is a regular dodecahedron) have mostly hexagonal faces.

  6. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes. Research in polyhedral combinatorics falls into two distinct areas.

  7. Ideal polyhedron - Wikipedia

    en.wikipedia.org/wiki/Ideal_polyhedron

    The resulting shape is the intersection of all closed half-spaces that have the given ideal points as limit points. Alternatively, any Euclidean convex polyhedron that has a circumscribed sphere can be reinterpreted as an ideal polyhedron by interpreting the interior of the sphere as a Klein model for hyperbolic space. [1]

  8. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A convex regular polyhedron has all of three related spheres (other polyhedra lack at least one kind) which share its centre: An insphere, tangent to all faces. An intersphere or midsphere, tangent to all edges. A circumsphere, tangent to all vertices.

  9. Jessen's icosahedron - Wikipedia

    en.wikipedia.org/wiki/Jessen's_icosahedron

    The convex shapes in this family range from the octahedron itself through the regular icosahedron to the cuboctahedron, with its square faces subdivided into two right triangles in a flat plane. Extending the range of the parameter past the proportion that gives the cuboctahedron produces non-convex shapes, including Jessen's icosahedron.