Search results
Results From The WOW.Com Content Network
The yield strength is the point at which elastic deformation gives way to plastic deformation. Deformation in the plastic range is non-linear, and is described by the stress-strain curve. This response produces the observed properties of scratch and indentation hardness, as described and measured in materials science.
This page was last edited on 16 November 2024, at 12:16 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
"Soft" magnetic materials with low coercivity and hysteresis, such as silicon steel, or ferrite, are usually used in cores. Magnetic field (green) created by a current-carrying winding (red) in a typical magnetic core transformer or inductor, with the iron core C forming a closed loop, possibly with air gaps G in it. The drawing shows a section ...
Mohs hardness kit, containing one specimen of each mineral on the ten-point hardness scale. The Mohs scale (/ m oʊ z / MOHZ) of mineral hardness is a qualitative ordinal scale, from 1 to 10, characterizing scratch resistance of minerals through the ability of harder material to scratch softer material.
Soft thermoplastics have a rather large plastic deformation range as do ductile metals such as copper, silver, and gold. Steel does, too, but not cast iron. Hard thermosetting plastics, rubber, crystals, and ceramics have minimal plastic deformation ranges.
Twinning is the plastic deformation which takes place along two planes due to a set of forces applied to a given metal piece. Most metals show more plasticity when hot than when cold. Lead shows sufficient plasticity at room temperature, while cast iron does not possess sufficient plasticity for any forging operation even when hot.
Magnetically hard materials have high coercivity, whereas magnetically soft materials have low coercivity. The overall strength of a magnet is measured by its magnetic moment or, alternatively, its total magnetic flux. The local strength of magnetism in a material is measured by its magnetization.
A material is also considered hard if it resists plastic deformation. If a material has short covalent bonds, atomic dislocations that lead to plastic deformation are less likely to occur than in materials with longer, delocalized bonds. If a material contains many delocalized bonds it is likely to be soft. [10]