When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...

  3. Independent and identically distributed random variables

    en.wikipedia.org/wiki/Independent_and...

    A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]

  4. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. [1] The term 'random variable' in its mathematical definition refers to neither randomness nor variability [ 2 ] but instead is a mathematical function in which

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Probability density function (pdf) or probability density: function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the random variable would equal that sample.

  6. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.

  7. Mixture distribution - Wikipedia

    en.wikipedia.org/wiki/Mixture_distribution

    The underlying random variables may be random real numbers, or they may be random vectors (each having the same dimension), in which case the mixture distribution is a multivariate distribution. In cases where each of the underlying random variables is continuous , the outcome variable will also be continuous and its probability density ...

  8. Rademacher distribution - Wikipedia

    en.wikipedia.org/wiki/Rademacher_distribution

    Random vectors with components sampled independently from the Rademacher distribution are useful for various stochastic approximations, for example: The Hutchinson trace estimator , [ 11 ] which can be used to efficiently approximate the trace of a matrix of which the elements are not directly accessible, but rather implicitly defined via ...

  9. Characteristic function (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Characteristic_function...

    If a random variable admits a density function, then the characteristic function is its Fourier dual, in the sense that each of them is a Fourier transform of the other. If a random variable has a moment-generating function (), then the domain of the characteristic function can be extended to the complex plane, and