Ad
related to: find the estimated quotient rule definition calculus 2 examples
Search results
Results From The WOW.Com Content Network
1.2 Example 2: Derivative of ... In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions.
However, the case α = −1 is somewhat different; in this case, the integrand becomes | x | −2 x = ∇(log | x |), so that the final equality becomes log | q | − log | p |. Note that if n = 1, then this example is simply a slight variant of the familiar power rule from single-variable calculus.
The series can be compared to an integral to establish convergence or divergence. Let : [,) + be a non-negative and monotonically decreasing function such that () =.If = <, then the series converges.
An example of the use of discrete calculus in mechanics is Newton's second law of motion: historically stated it expressly uses the term "change of motion" which implies the difference quotient saying The change of momentum of a body is equal to the resultant force acting on the body and is in the same direction.
The chain rule can be used to derive some well-known differentiation rules. For example, the quotient rule is a consequence of the chain rule and the product rule. To see this, write the function f(x)/g(x) as the product f(x) · 1/g(x).
Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]
In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f.The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.
The validity of this rule follows from the validity of the Feynman method, for one may always substitute a subscripted del and then immediately drop the subscript under the condition of the rule. For example, from the identity A ⋅( B × C ) = ( A × B )⋅ C we may derive A ⋅(∇× C ) = ( A ×∇)⋅ C but not ∇⋅( B × C ) = (∇× B ...