Search results
Results From The WOW.Com Content Network
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
The chord function is defined geometrically as shown in the picture. The chord of an angle is the length of the chord between two points on a unit circle separated by that central angle . The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure).
A line perpendicular to a chord of a hypercycle at its midpoint is a radius and it bisects the arc subtended by the chord. Let AB be the chord and M its middle point. By symmetry the line R through M perpendicular to AB must be orthogonal to the axis L. Therefore R is a radius. Also by symmetry, R will bisect the arc AB.
This formula cannot be used if the quadrilateral is a right kite, since the denominator is zero in that case. If M, N are the midpoints of the diagonals, and E, F are the intersection points of the extensions of opposite sides, then the area of a bicentric quadrilateral is given by
Line DE bisects line AB at D, line EF is a perpendicular bisector of segment AD at C, and line EF is the interior bisector of right angle AED. In geometry, bisection is the division of something into two equal or congruent parts (having the same shape and size). Usually it involves a bisecting line, also called a bisector.
Any square, rectangle, isosceles trapezoid, or antiparallelogram is cyclic. A kite is cyclic if and only if it has two right angles – a right kite.A bicentric quadrilateral is a cyclic quadrilateral that is also tangential and an ex-bicentric quadrilateral is a cyclic quadrilateral that is also ex-tangential.
Hipparchus. The concepts of angle and radius were already used by ancient peoples of the first millennium BC.The Greek astronomer and astrologer Hipparchus (190–120 BC) created a table of chord functions giving the length of the chord for each angle, and there are references to his using polar coordinates in establishing stellar positions. [2]
The relationship of versine, chord and radius is derived from the Pythagorean theorem. Based on the diagram on the right: = We can replace OC with r (radius) minus v, OA with r and AC with L/2 (half a chord). Then the rearrange formula to: