Search results
Results From The WOW.Com Content Network
The standard example of a longitudinal wave is a sound wave or "pressure wave" in gases, liquids, or solids, whose oscillations cause compression and expansion of the material through which the wave is propagating. Pressure waves are called "primary waves", or "P-waves" in geophysics. Water waves involve both longitudinal and transverse motions ...
When a wave moves faster than the local speed of sound in a fluid, it is a shock wave. Like an ordinary wave, a shock wave carries energy and can propagate through a medium; however, it is characterized by an abrupt, nearly discontinuous change in pressure , temperature and density of the medium.
The expression for the infinitesimal reversible change in the Gibbs free energy as a function of its "natural variables" p and T, for an open system, subjected to the operation of external forces (for instance, electrical or magnetic) X i, which cause the external parameters of the system a i to change by an amount da i, can be derived as ...
A wave packet has an envelope that describes the overall amplitude of the wave; within the envelope, the distance between adjacent peaks or troughs is sometimes called a local wavelength. [21] [22] An example is shown in the figure. In general, the envelope of the wave packet moves at a speed different from the constituent waves. [23]
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).
Mechanical energy to power the aircraft's electrical and hydraulic systems can be taken from the turbine shaft, but thrust is produced by expelled exhaust gas. An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy. [1] [2]
In addition, particle physicists design and develop the high-energy accelerators, [61] detectors, [62] and computer programs [63] necessary for this research. The field is also called "high-energy physics" because many elementary particles do not occur naturally but are created only during high-energy collisions of other particles. [64]
In almost all thermal power stations, water is used as the working fluid (used in a closed-loop between boiler, steam turbine, and condenser), and the coolant (used to exchange the waste heat to a water body or carry it away by evaporation in a cooling tower). In the United States, cooling power plants is the largest use of water. [152]