Search results
Results From The WOW.Com Content Network
The standard example of a longitudinal wave is a sound wave or "pressure wave" in gases, liquids, or solids, whose oscillations cause compression and expansion of the material through which the wave is propagating. Pressure waves are called "primary waves", or "P-waves" in geophysics. Water waves involve both longitudinal and transverse motions ...
When a wave moves faster than the local speed of sound in a fluid, it is a shock wave. Like an ordinary wave, a shock wave carries energy and can propagate through a medium; however, it is characterized by an abrupt, nearly discontinuous change in pressure , temperature and density of the medium.
The expression for the infinitesimal reversible change in the Gibbs free energy as a function of its "natural variables" p and T, for an open system, subjected to the operation of external forces (for instance, electrical or magnetic) X i, which cause the external parameters of the system a i to change by an amount da i, can be derived as ...
A wave packet has an envelope that describes the overall amplitude of the wave; within the envelope, the distance between adjacent peaks or troughs is sometimes called a local wavelength. [21] [22] An example is shown in the figure. In general, the envelope of the wave packet moves at a speed different from the constituent waves. [23]
A series of experimental investigations of the propagation of strong shock wave (SW) in a liquid with gas bubbles, which made it possible to establish the basic laws governing the process, the mechanism for the transformation of the energy of the SW, attenuation of the SW, and the formation of the structure, and experiments on the analysis of ...
Sometimes in the field of physics "matter" is simply equated with particles that exhibit rest mass (i.e., that cannot travel at the speed of light), such as quarks and leptons. However, in both physics and chemistry, matter exhibits both wave-like and particle-like properties, the so-called wave–particle duality. [10] [11] [12]
In addition, particle physicists design and develop the high-energy accelerators, [68] detectors, [69] and computer programs [70] necessary for this research. The field is also called "high-energy physics" because many elementary particles do not occur naturally but are created only during high-energy collisions of other particles. [71]
Tidal power – Technology to convert the energy from tides into useful forms of power; Water pinch analysis – A systematic technique for reducing water consumption and wastewater generation; Wave power – Transport of energy by wind waves, and the capture of that energy to do useful work