Search results
Results From The WOW.Com Content Network
Cell division is the process by which a parent cell divides into two daughter cells. [1] Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing.
The cell cycle, or cell-division cycle, is the sequential series of events that take place in a cell that causes it to divide into two daughter cells. These events include the growth of the cell, duplication of its DNA ( DNA replication ) and some of its organelles , and subsequently the partitioning of its cytoplasm, chromosomes and other ...
a. non-dividing cells b. nuclei preparing for division (spireme-stage) c. dividing cells showing mitotic figures e. pair of daughter-cells shortly after division. Mitosis (/ m aɪ ˈ t oʊ s ɪ s /) is a part of the cell cycle in which replicated chromosomes are separated into two new nuclei.
Cytokinesis (/ ˌ s aɪ t oʊ k ɪ ˈ n iː s ɪ s /) is the part of the cell division process and part of mitosis during which the cytoplasm of a single eukaryotic cell divides into two daughter cells. Cytoplasmic division begins during or after the late stages of nuclear division in mitosis and meiosis.
Prokaryotic cells divide by binary fission, while eukaryotic cells usually undergo a process of nuclear division, called mitosis, followed by division of the cell, called cytokinesis. A diploid cell may also undergo meiosis to produce haploid cells, usually four.
The single cell is now set up to undergo an asymmetric cell division, however the orientation in which the division occurs is also an important factor. The mitotic spindle must be oriented correctly to ensure that the proper cell fate determinants are distributed appropriately to the daughter cells.
Cell division is an extremely complex process that contains four different subprocesses. [2] These processes included the growth of a cell, DNA replication, the process of allocating replicated chromosomes to daughter cells, and septum formation. [2] Ultimately, the septum is the crucial ending to mitosis, meiosis, and the division of bacterial ...
As a result, cells can only divide a certain number of times before the DNA loss prevents further division. (This is known as the Hayflick limit .) Within the germ cell line, which passes DNA to the next generation, telomerase extends the repetitive sequences of the telomere region to prevent degradation.