When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Median trick - Wikipedia

    en.wikipedia.org/wiki/Median_trick

    The median trick is a generic approach that increases the chances of a probabilistic algorithm to succeed. [1] Apparently first used in 1986 [ 2 ] by Jerrum et al. [ 3 ] for approximate counting algorithms , the technique was later applied to a broad selection of classification and regression problems.

  3. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]

  4. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Single-step methods (such as Euler's method) refer to only one previous point and its derivative to determine the current value. Methods such as Runge–Kutta take some intermediate steps (for example, a half-step) to obtain a higher order method, but then discard all previous information before taking a second step.

  5. Direct multiple shooting method - Wikipedia

    en.wikipedia.org/wiki/Direct_multiple_shooting...

    The boundary value problem solver's performance suffers from this. Even stable and well-conditioned ODEs may make for unstable and ill-conditioned BVPs. A slight alteration of the initial value guess y 0 may generate an extremely large step in the ODEs solution y(t b; t a, y 0) and thus in the values of the function F whose root is sought. Non ...

  6. Median of medians - Wikipedia

    en.wikipedia.org/wiki/Median_of_medians

    The median is a good pivot – the best for sorting, and the best overall choice for selection – decreasing the search set by half at each step. Thus if one can compute the median in linear time, this only adds linear time to each step, and thus the overall complexity of the algorithm remains linear.

  7. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    In numerical analysis, the Runge–Kutta methods (English: / ˈ r ʊ ŋ ə ˈ k ʊ t ɑː / ⓘ RUUNG-ə-KUUT-tah [1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]

  8. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    The accuracy of the Euler method improves only linearly with the step size is decreased, whereas the Heun Method improves accuracy quadratically . [5] The scheme can be compared with the implicit trapezoidal method , but with f ( t i + 1 , y i + 1 ) {\displaystyle f(t_{i+1},y_{i+1})} replaced by f ( t i + 1 , y ~ i + 1 ) {\displaystyle f(t_{i+1 ...

  9. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The step size is =. The same illustration for = The midpoint method converges faster than the Euler method, as .. Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs).