Search results
Results From The WOW.Com Content Network
This conversion can be used to prove that every context-free language can be accepted by a real-time (non-deterministic) pushdown automaton, i.e., the automaton reads a letter from its input every step. Given a grammar in GNF and a derivable string in the grammar with length n, any top-down parser will halt at depth n.
In the theory of computation, a branch of theoretical computer science, a pushdown automaton (PDA) is a type of automaton that employs a stack. Pushdown automata are used in theories about what can be computed by machines. They are more capable than finite-state machines but less capable than Turing machines (see below).
These languages are exactly all languages that can be recognized by a non-deterministic pushdown automaton. Context-free languages—or rather its subset of deterministic context-free languages —are the theoretical basis for the phrase structure of most programming languages , though their syntax also includes context-sensitive name ...
Nested words over the alphabet = {,, …,} can be encoded into "ordinary" words over the tagged alphabet ^, in which each symbol a from Σ has three tagged counterparts: the symbol a for encoding a call position in a nested word labelled with a, the symbol a for encoding a return position labelled with a, and finally the symbol a itself for representing an internal position labelled with a.
Nondeterministic finite automaton with ε-moves (NFA-ε) is a further generalization to NFA. In this kind of automaton, the transition function is additionally defined on the empty string ε. A transition without consuming an input symbol is called an ε-transition and is represented in state diagrams by an arrow labeled "ε". ε-transitions ...
The two are not equivalent for the deterministic pushdown automaton (although they are for the non-deterministic pushdown automaton). The languages accepted by empty stack are those languages that are accepted by final state and are prefix-free: no word in the language is the prefix of another word in the language. [2] [3]
An epsilon transition (also epsilon move or lambda transition) allows an automaton to change its state spontaneously, i.e. without consuming an input symbol. It may appear in almost all kinds of nondeterministic automaton in formal language theory, in particular: Nondeterministic Turing machine; Nondeterministic pushdown automaton
In automata theory, an unambiguous finite automaton (UFA) is a nondeterministic finite automaton (NFA) such that each word has at most one accepting path. Each deterministic finite automaton (DFA) is an UFA, but not vice versa. DFA, UFA, and NFA recognize exactly the same class of formal languages. On the one hand, an NFA can be exponentially ...