Search results
Results From The WOW.Com Content Network
Any exponential function can be written as the self-composition (()) for infinitely many possible choices of .In particular, for every in the open interval (,) and for every continuous strictly increasing function from [,] onto [,], there is an extension of this function to a continuous strictly increasing function on the real numbers such that (()) = . [4]
The functional square root of the exponential function (now known as a half-exponential function) was studied by Hellmuth Kneser in 1950. [1]The solutions of f(f(x)) = x over (the involutions of the real numbers) were first studied by Charles Babbage in 1815, and this equation is called Babbage's functional equation. [2]
(If N(t) is discrete, then this is the median life-time rather than the mean life-time.) This time is called the half-life, and often denoted by the symbol t 1/2. The half-life can be written in terms of the decay constant, or the mean lifetime, as: / = = ().
The spectral sequences at (a) upper right and (b) lower right are respectively computed from (a) one cycle of the periodic summation of s(t) and (b) one cycle of the periodic summation of the s(nT) sequence. The respective formulas are (a) the Fourier series integral and (b) the DFT summation. Its similarities to the original transform, S(f ...
The tangent half-angle substitution parametrizes the unit circle centered at (0, 0). Instead of +∞ and −∞, we have only one ∞, at both ends of the real line. That is often appropriate when dealing with rational functions and with trigonometric functions. (This is the one-point compactification of the line.)
The voltage (v) on the capacitor (C) changes with time as the capacitor is charged or discharged via the resistor (R) In electronics, when a capacitor is charged or discharged via a resistor, the voltage on the capacitor follows the above formula, with the half time approximately equal to 0.69 times the time constant, which is equal to the product of the resistance and the capacitance.
Instead, the half-life is defined in terms of probability: "Half-life is the time required for exactly half of the entities to decay on average". In other words, the probability of a radioactive atom decaying within its half-life is 50%. [2] For example, the accompanying image is a simulation of many identical atoms undergoing radioactive decay.
In the mathematical field of real analysis, a simple function is a real (or complex)-valued function over a subset of the real line, similar to a step function. Simple functions are sufficiently "nice" that using them makes mathematical reasoning, theory, and proof easier. For example, simple functions attain only a finite number of values.