When.com Web Search

  1. Ads

    related to: triangle formulas for missing angles pdf printable

Search results

  1. Results From The WOW.Com Content Network
  2. Mollweide's formula - Wikipedia

    en.wikipedia.org/wiki/Mollweide's_formula

    In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. [1] [2] A variant in more geometrical style was first published by Isaac Newton in 1707 and then by Friedrich Wilhelm von Oppel in 1746. Thomas Simpson published the now-standard expression in 1748.

  3. Half-side formula - Wikipedia

    en.wikipedia.org/wiki/Half-side_formula

    Spherical triangle. In spherical trigonometry, the half side formula relates the angles and lengths of the sides of spherical triangles, which are triangles drawn on the surface of a sphere and so have curved sides and do not obey the formulas for plane triangles. [1]

  4. Category:Theorems about triangles - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_about...

    Download as PDF; Printable version; In other projects ... Angle bisector theorem; ... (triangle) Mollweide's formula;

  5. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  6. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.

  7. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    The quaternions q, r, and s are used to represent rotations with axes of rotation w′, u′, and v′, respectively, and angles of rotation 2a, 2b, and 2c, respectively. Because these are double angles, each of q, r, and s represents two applications of the rotation implied by an edge of the spherical triangle. From the definitions, it follows ...

  8. Law of cotangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_cotangents

    Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = ⁠ a + b + c / 2 ⁠, and r is the radius of the inscribed circle, the law of cotangents states that

  9. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    Euclid proved that the area of a triangle is half that of a parallelogram with the same base and height in his book Elements in 300 BCE. [1] In 499 CE Aryabhata, used this illustrated method in the Aryabhatiya (section 2.6). [2] Although simple, this formula is only useful if the height can be readily found, which is not always the case.