When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.

  3. Table of Lie groups - Wikipedia

    en.wikipedia.org/wiki/Table_of_Lie_groups

    skew-symmetric square real matrices, with Lie bracket the commutator. Yes, except n=4 Yes Exception: so(4) is semi-simple, but not simple. n(n−1)/2 sp(2n,R) real matrices that satisfy JA + A T J = 0 where J is the standard skew-symmetric matrix: Yes Yes n(2n+1) sp(n) square quaternionic matrices A satisfying A = −A ∗, with Lie bracket the ...

  4. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.

  5. Cayley transform - Wikipedia

    en.wikipedia.org/wiki/Cayley_transform

    Conversely, let Q be any orthogonal matrix which does not have −1 as an eigenvalue; then = (+) is a skew-symmetric matrix. (See also: Involution.) The condition on Q automatically excludes matrices with determinant −1, but also excludes certain special orthogonal matrices.

  6. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Hankel matrix: A matrix with constant skew-diagonals; also an upside down Toeplitz matrix. A square Hankel matrix is symmetric. Hermitian matrix: A square matrix which is equal to its conjugate transpose, A = A *. Hessenberg matrix: An "almost" triangular matrix, for example, an upper Hessenberg matrix has zero entries below the first subdiagonal.

  7. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    In mathematics, a matrix (pl.: matrices) is a rectangular array or table of numbers, ... A = −A T, then A is a skew-symmetric matrix. In complex matrices, ...

  8. Symplectic vector space - Wikipedia

    en.wikipedia.org/wiki/Symplectic_vector_space

    If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation. In this case every symplectic form is a symmetric form, but not vice versa. Working in a fixed basis, can be represented by a matrix.

  9. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    since the matrices A and A T commute, this can be easily proven with the skew-symmetric matrix condition. This is not enough to show that 𝖘𝖔(3) is the corresponding Lie algebra for SO(3), and shall be proven separately. The level of difficulty of proof depends on how a matrix group Lie algebra is defined.