When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P ( n ) represent " 2 n − 1 is odd": (i) For n = 1 , 2 n − 1 = 2(1) − 1 = 1 , and 1 is odd, since it leaves a remainder of 1 when divided by 2 .

  3. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.

  4. List of incomplete proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_incomplete_proofs

    In 1925 Ackermann published a proof that a weak system can prove the consistency of a version of analysis, but von Neumann found an explicit mistake in it a few years later. Gödel's incompleteness theorems showed that it is not possible to prove the consistency of analysis using weaker systems. Groups of order 64.

  5. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity.. There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence.

  6. Abel–Ruffini theorem - Wikipedia

    en.wikipedia.org/wiki/Abel–Ruffini_theorem

    Abel wrote: "The first and, if I am not mistaken, the only one who, before me, has sought to prove the impossibility of the algebraic solution of general equations is the mathematician Ruffini. But his memoir is so complicated that it is very difficult to determine the validity of his argument.

  7. Proof without words - Wikipedia

    en.wikipedia.org/wiki/Proof_without_words

    Proof without words of the Nicomachus theorem (Gulley (2010)) that the sum of the first n cubes is the square of the n th triangular number. In mathematics, a proof without words (or visual proof) is an illustration of an identity or mathematical statement which can be demonstrated as self-evident by a diagram without any accompanying explanatory text.

  8. Associative property - Wikipedia

    en.wikipedia.org/wiki/Associative_property

    If the product operation is associative, the generalized associative law says that all these expressions will yield the same result. So unless the expression with omitted parentheses already has a different meaning (see below), the parentheses can be considered unnecessary and "the" product can be written unambiguously as

  9. Proof (truth) - Wikipedia

    en.wikipedia.org/wiki/Proof_(truth)

    In most disciplines, evidence is required to prove something. Evidence is drawn from the experience of the world around us, with science obtaining its evidence from nature, [11] law obtaining its evidence from witnesses and forensic investigation, [12] and so on. A notable exception is mathematics, whose proofs are drawn from a mathematical ...