When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Photosynthesis - Wikipedia

    en.wikipedia.org/wiki/Photosynthesis

    Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.

  3. Photosynthetic efficiency - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_efficiency

    In actuality, however, plants do not absorb all incoming sunlight (due to reflection, respiration requirements of photosynthesis and the need for optimal solar radiation levels) and do not convert all harvested energy into biomass, which results in a maximum overall photosynthetic efficiency of 3 to 6% of total solar radiation. [1]

  4. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.

  5. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    The pigments which absorb light at the highest energy level are found furthest from the reaction center. On the other hand, the pigments with the lowest energy level are more closely associated with the reaction center. Energy will be efficiently transferred from the outer part of the antenna complex to the inner part.

  6. Light-harvesting complex - Wikipedia

    en.wikipedia.org/wiki/Light-harvesting_complex

    Photosynthesis is a process where light is absorbed or harvested by pigment protein complexes which are able to turn sunlight into energy. [5] Absorption of a photon by a molecule takes place when pigment protein complexes harvest sunlight leading to electronic excitation delivered to the reaction centre where the process of charge separation can take place.

  7. Photosystem II - Wikipedia

    en.wikipedia.org/wiki/Photosystem_II

    Photosynthetic water splitting (or oxygen evolution) is one of the most important reactions on the planet, since it is the source of nearly all the atmosphere's oxygen. Moreover, artificial photosynthetic water-splitting may contribute to the effective use of sunlight as an alternative energy-source.

  8. Thylakoid - Wikipedia

    en.wikipedia.org/wiki/Thylakoid

    The water-splitting reaction occurs on the lumenal side of the thylakoid membrane and is driven by the light energy captured by the photosystems. This oxidation of water conveniently produces the waste product O 2 that is vital for cellular respiration. The molecular oxygen formed by the reaction is released into the atmosphere.

  9. Heterotroph - Wikipedia

    en.wikipedia.org/wiki/Heterotroph

    Autotrophs use energy from sunlight (photoautotrophs) or oxidation of inorganic compounds (lithoautotrophs) to convert inorganic carbon dioxide to organic carbon compounds and energy to sustain their life. Comparing the two in basic terms, heterotrophs (such as animals) eat either autotrophs (such as plants) or other heterotrophs, or both.