When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kernel regression - Wikipedia

    en.wikipedia.org/wiki/Kernel_regression

    Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]

  3. Kernel (statistics) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(statistics)

    At the end, the form of the kernel is examined, and if it matches a known distribution, the normalization factor can be reinstated. Otherwise, it may be unnecessary (for example, if the distribution only needs to be sampled from). For many distributions, the kernel can be written in closed form, but not the normalization constant.

  4. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    Kernel methods can be thought of as instance-based learners: rather than learning some fixed set of parameters corresponding to the features of their inputs, they instead "remember" the -th training example (,) and learn for it a corresponding weight .

  5. NetworkManager - Wikipedia

    en.wikipedia.org/wiki/NetworkManager

    Linux kernel: network device drivers and network stack. Utility programs are not depicted, they communicate through the SCI with the different components of the kernel. To connect computers with each other, various communications protocols have been developed, e.g. IEEE 802.3 (Ethernet), IEEE 802.11 ("wireless"), IEEE 802.15.1 (Bluetooth ...

  6. Multiple kernel learning - Wikipedia

    en.wikipedia.org/wiki/Multiple_kernel_learning

    Unsupervised multiple kernel learning algorithms have also been proposed by Zhuang et al. The problem is defined as follows. Let = be a set of unlabeled data. The kernel definition is the linear combined kernel ′ = =. In this problem, the data needs to be "clustered" into groups based on the kernel distances.

  7. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  8. Radial basis function kernel - Wikipedia

    en.wikipedia.org/wiki/Radial_basis_function_kernel

    Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure. [2] The feature space of the kernel has an infinite number of dimensions; for =, its expansion using the multinomial theorem is: [3]

  9. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    Kernel methods are a well-established tool to analyze the relationship between input data and the corresponding output of a function. Kernels encapsulate the properties of functions in a computationally efficient way and allow algorithms to easily swap functions of varying complexity.