When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  3. List of open-source software for mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_open-source...

    The primary difference between a computer algebra system and a traditional calculator is the ability to deal with equations symbolically rather than numerically. The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations.

  4. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...

  5. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    The Oberth effect is used in a powered flyby or Oberth maneuver where the application of an impulse, typically from the use of a rocket engine, close to a gravitational body (where the gravity potential is low, and the speed is high) can give much more change in kinetic energy and final speed (i.e. higher specific energy) than the same impulse ...

  6. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    After reducing the problem to the relative motion of the bodies in the plane, he defines the constant of the motion c 3 by the equation ẋ 2 + ẏ 2 = 2k 2 M/r + c 3 , where M is the total mass of the two bodies and k 2 is Moulton's notation for the gravitational constant .

  7. Relativistic rocket equation - Wikipedia

    en.wikipedia.org/wiki/Relativistic_rocket

    In the relativistic case, the equation is still valid if is the acceleration in the rocket's reference frame and is the rocket's proper time because at velocity 0 the relationship between force and acceleration is the same as in the classical case. Solving this equation for the ratio of initial mass to final mass gives

  8. Konstantin Tsiolkovsky - Wikipedia

    en.wikipedia.org/wiki/Konstantin_Tsiolkovsky

    Tsiolkovsky calculated, using the Tsiolkovsky equation, [16]: 1 that the horizontal speed required for a minimal orbit around the Earth is 8,000 m/s (5 miles per second) and that this could be achieved by means of a multistage rocket fueled by liquid oxygen and liquid hydrogen. In the article "Exploration of Outer Space by Means of Rocket ...

  9. Classical rocket equation - Wikipedia

    en.wikipedia.org/?title=Classical_rocket...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Classical_rocket_equation&oldid=847083726"https://en.wikipedia.org/w/index.php?title=Classical_rocket_equation