When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Closed graph property - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_property

    Observation: If g : S → Y is a function and G is the canonical set-valued function induced by g (i.e. G : S → 2 Y is defined by G(s) := { g(s) } for every s ∈ S) then since Gr g = Gr G, g has a closed (resp. sequentially closed, open, sequentially open) graph in X × Y if and only if the same is true of G.

  3. Closed graph theorem - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem

    Closed graph theorem [5] — If : is a map from a topological space into a Hausdorff space, then the graph of is closed if : is continuous. The converse is true when Y {\displaystyle Y} is compact .

  4. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The usual proof of the closed graph theorem employs the open mapping theorem.It simply uses a general recipe of obtaining the closed graph theorem from the open mapping theorem; see closed graph theorem § Relation to the open mapping theorem (this deduction is formal and does not use linearity; the linearity is needed to appeal to the open mapping theorem which relies on the linearity.)

  5. Graph of a function - Wikipedia

    en.wikipedia.org/wiki/Graph_of_a_function

    Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.

  6. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    In this case, Y is the set of real numbers R with the standard metric d Y (y 1, y 2) = |y 1 − y 2 |, and X is a subset of R. In general, the inequality is (trivially) satisfied if x 1 = x 2 . Otherwise, one can equivalently define a function to be Lipschitz continuous if and only if there exists a constant K ≥ 0 such that, for all x 1 ≠ x 2 ,

  7. Fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorem

    The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...

  8. Fixed point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fixed_point_(mathematics)

    Let ≤ be a partial order over a set X and let f: X → X be a function over X. Then a prefixed point (also spelled pre-fixed point, sometimes shortened to prefixpoint or pre-fixpoint) [citation needed] of f is any p such that f(p) ≤ p. Analogously, a postfixed point of f is any p such that p ≤ f(p). [3] The opposite usage occasionally ...

  9. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    The function which takes the value 0 for rational number and 1 for irrational number (cf. Dirichlet function) is bounded. Thus, a function does not need to be "nice" in order to be bounded. The set of all bounded functions defined on [ 0 , 1 ] {\displaystyle [0,1]} is much larger than the set of continuous functions on that interval.