Search results
Results From The WOW.Com Content Network
negation: not propositional logic, Boolean algebra: The statement is true if and only if A is false. A slash placed through another operator is the same as placed in front. The prime symbol is placed after the negated thing, e.g. ′ [2]
An example: we are given the conditional fact that if it is a bear, then it can swim. Then, all 4 possibilities in the truth table are compared to that fact. If it is a bear, then it can swim — T; If it is a bear, then it can not swim — F; If it is not a bear, then it can swim — T because it doesn’t contradict our initial fact.
Propositional logic deals with statements, which are defined as declarative sentences having truth value. [29] [1] Examples of statements might include: Wikipedia is a free online encyclopedia that anyone can edit. London is the capital of England. All Wikipedia editors speak at least three languages.
As a further example, negation can be defined in terms of NAND and can also be defined in terms of NOR. Algebraically, classical negation corresponds to complementation in a Boolean algebra, and intuitionistic negation to pseudocomplementation in a Heyting algebra. These algebras provide a semantics for classical and intuitionistic logic.
" In this case, unlike the last example, the inverse of the statement is true. The converse is "If a polygon has four sides, then it is a quadrilateral." Again, in this case, unlike the last example, the converse of the statement is true. The negation is "There is at least one quadrilateral that does not have four sides.
The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
Logical connectives can be used to link zero or more statements, so one can speak about n-ary logical connectives. The boolean constants True and False can be thought of as zero-ary operators. Negation is a unary connective, and so on.
A generalization of the class of Horn formulas is that of renameable-Horn formulae, which is the set of formulas that can be placed in Horn form by replacing some variables with their respective negation. For example, (x 1 ∨ ¬x 2) ∧ (¬x 1 ∨ x 2 ∨ x 3) ∧ ¬x 1 is not a Horn formula, but can be renamed to the Horn formula (x 1 ∨ ¬x ...