Search results
Results From The WOW.Com Content Network
Below is an example of a learning algorithm for a single-layer perceptron with a single output unit. For a single-layer perceptron with multiple output units, since the weights of one output unit are completely separate from all the others', the same algorithm can be run for each output unit.
The Mark I Perceptron achieved 99.8% accuracy on a test dataset with 500 neurons in a single layer. The size of the training dataset was 10,000 example images. It took 3 seconds for the training pipeline to go through a single image.
Minsky and Papert proved that the single-layer perceptron could not compute parity under the condition of conjunctive localness (Theorem 3.1.1), and showed that the order required for a perceptron to compute connectivity grew with the input size (Theorem 5.5). [17] [16]
Upload file; Search. Search. Appearance. ... Download QR code; Print/export ... It can be derived as the backpropagation algorithm for a single-layer neural network ...
Also, certain non-continuous activation functions can be used to approximate a sigmoid function, which then allows the above theorem to apply to those functions. For example, the step function works. In particular, this shows that a perceptron network with a single infinitely wide hidden layer can approximate arbitrary functions.
Backpropagation computes the gradient of a loss function with respect to the weights of the network for a single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule; this can be derived through ...
A Hopfield network (or associative memory) is a form of recurrent neural network, or a spin glass system, that can serve as a content-addressable memory.The Hopfield network, named for John Hopfield, consists of a single layer of neurons, where each neuron is connected to every other neuron except itself.
Seppo Linnainmaa in 1970 is said to have developed the Backpropagation Algorithm [7] but the origins of the algorithm go back to the 1960s with many contributors. It is a generalisation of the least mean squares algorithm in the linear perceptron and the Delta Learning Rule.