Search results
Results From The WOW.Com Content Network
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials , consisting of the Hermite polynomials , the Laguerre polynomials and ...
Suppose that y 0 = 1, y 1, ... is a sequence of polynomials where y n has degree n. If this is a sequence of orthogonal polynomials for some positive weight function then it satisfies a 3-term recurrence relation. Favard's theorem is roughly a converse of this, and states that if these polynomials satisfy a 3-term recurrence relation of the form
The study of Riordan arrays is a field influenced by and contributing to other areas such as combinatorics, group theory, matrix theory, number theory, probability, sequences and series, Lie groups and Lie algebras, orthogonal polynomials, graph theory, networks, unimodal sequences, combinatorial identities, elliptic curves, numerical ...
In mathematics, the Christoffel–Darboux formula or Christoffel–Darboux theorem is an identity for a sequence of orthogonal polynomials, introduced by Elwin Bruno Christoffel and Jean Gaston Darboux .
Biorthogonal polynomials are a generalization of orthogonal polynomials and share many of their properties. There are two different concepts of biorthogonal polynomials in the literature: Iserles & Nørsett (1988) introduced the concept of polynomials biorthogonal with respect to a sequence of measures, while Szegő introduced the concept of ...
In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence. The polynomials arise in: signal processing as Hermitian wavelets for wavelet transform analysis; probability, such as the Edgeworth series, as well as in connection with Brownian motion; combinatorics, as an example of an Appell sequence, obeying the umbral ...
Let (()) = be a sequence of orthogonal polynomials defined on the interval [,] satisfying the orthogonality condition () =,, where () is a suitable weight function, is a constant depending on , and , is the Kronecker delta.
Various polynomial sequences named for mathematicians of the past are sequences of orthogonal polynomials. In particular: The Hermite polynomials are orthogonal with respect to the Gaussian distribution with zero mean value. The Legendre polynomials are orthogonal with respect to the uniform distribution on the interval [,].