Search results
Results From The WOW.Com Content Network
The simplest example of such a system is a single circular coil of conductive wire immersed in a magnetic field, in which case the flux linkage is simply the flux passing through the loop. The flux Φ {\displaystyle \Phi } through the surface delimited by a coil turn exists independently of the presence of the coil.
In contrast, different amounts of radiation are absorbed, because the upward flux entering any layer is usually greater than the downward flux. In "line-by-line" methods, the change in spectral intensity ( dI λ , W/sr/m 2 /μm) is numerically integrated using a wavelength increment small enough (less than 1 nm) to accurately describe the shape ...
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically.
Stefan surmised that 1/3 of the energy flux from the Sun is absorbed by the Earth's atmosphere, so he took for the correct Sun's energy flux a value 3/2 times greater than Soret's value, namely 29 × 3/2 = 43.5. Precise measurements of atmospheric absorption were not made until 1888 and 1904. The temperature Stefan obtained was a median value ...
The loss terms (absorption, out-scattering, and leakage) and the source terms (in-scatter and fission) are proportional to the neutron flux, contrasting with fixed-source problems where the source is independent of the flux. In these calculations, the presumption of time invariance requires that neutron production exactly equals neutron loss.
If there is a finite change in flux linkage from one value to another (e.g. from to ), it can be calculated as: = () (If the changes are cyclic there will be losses for hysteresis and eddy currents. The additional energy for this would be taken from the input energy, so that the flux linkage to the coil is not affected by the losses and the ...
Diffusion cloud chamber with tracks of ionizing radiation (alpha particles) that are made visible as strings of droplets. In dosimetry, linear energy transfer (LET) is the amount of energy that an ionizing particle transfers to the material traversed per unit distance.
The goal of radiation therapy is to deliver energy, generally in the form of ionizing radiation, to cancerous tissue while sparing the surrounding normal tissue. Monte Carlo modeling is commonly employed in radiation therapy to determine the peripheral dose the patient will experience due to scattering, both from the patient tissue as well as scattering from collimation upstream in the linear ...