Search results
Results From The WOW.Com Content Network
Suppose further that the walk stops if it reaches 0 or m ≥ a; the time at which this first occurs is a stopping time. If it is known that the expected time at which the walk ends is finite (say, from Markov chain theory), the optional stopping theorem predicts that the expected stop position is equal to the initial position a.
Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...
The concept of a stopped martingale leads to a series of important theorems, including, for example, the optional stopping theorem which states that, under certain conditions, the expected value of a martingale at a stopping time is equal to its initial value.
Let T be some stopping time for R. Then the loop-erased random walk until time T is LE(R([1,T])). In other words, take R from its beginning until T — that's a (random) path — erase all the loops in chronological order as above — you get a random simple path. The stopping time T may be fixed, i.e. one may perform n steps and
A single realization of a one-dimensional Wiener process A single realization of a three-dimensional Wiener process. In mathematics, the Wiener process (or Brownian motion, due to its historical connection with the physical process of the same name) is a real-valued continuous-time stochastic process discovered by Norbert Wiener.
The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem.There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums S n, scaled by n −1, converge to zero, respectively in probability and almost surely:
In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times.
The earliest stopping time for reaching crossing point a, := {: =}, is an almost surely bounded stopping time. Then we can apply the strong Markov property to deduce that a relative path subsequent to τ a {\displaystyle \tau _{a}} , given by X t := W ( t + τ a ) − a {\displaystyle X_{t}:=W(t+\tau _{a})-a} , is also simple Brownian motion ...