Search results
Results From The WOW.Com Content Network
Jitter period is the interval between two times of maximum effect (or minimum effect) of a signal characteristic that varies regularly with time. Jitter frequency, the more commonly quoted figure, is its inverse. ITU-T G.810 classifies deviation lower frequencies below 10 Hz as wander and higher frequencies at or above 10 Hz as jitter. [2]
Jitter is often measured as a fraction of UI. For example, jitter of 0.01 UI is jitter that moves a signal edge by 1% of the UI duration. The widespread use of UI in jitter measurements comes from the need to apply the same requirements or results to cases of different symbol rates. This can be d
It is used to specify clock stability requirements in telecommunications standards. [1] MTIE measurements can be used to detect clock instability that can cause data loss on a communications channel. [ 2 ]
Time: The interval between two events present on the worldline of a single clock is called proper time, an important invariant of special relativity. As the origin of the muon at A and the encounter with Earth at D is on the muon's worldline, only a clock comoving with the muon and thus resting in S′ can indicate the proper time T′ 0 =AD.
In optics, jitter is used to refer to motion that has high temporal frequency relative to the integration/exposure time. This may result from vibration in an assembly or the unstable hand of a photographer. Jitter is typically differentiated from smear, which has a lower frequency relative to the integration time. [1]
A digital delay generator (also known as digital-to-time converter) is a piece of electronic test equipment that provides precise delays for triggering, syncing, delaying, and gating events. These generators are used in many experiments, controls, and processes where electronic timing of a single event or multiple events to a standard timing ...
The counter implementation's accuracy is limited by the clock frequency. If time is measured by whole counts, then the resolution is limited to the clock period. For example, a 10 MHz clock has a resolution of 100 ns. To get resolution finer than a clock period, there are time interpolation circuits. [6]
It was assumed for a long time in the framework of the standard model of particle physics that neutrinos are massless. Thus, they should travel at exactly the speed of light, according to special relativity. However, since the discovery of neutrino oscillations, it is assumed that they possess some small amount of mass. [1]