When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    lim inf X n consists of elements of X which belong to X n for all except finitely many n (i.e., for cofinitely many n). That is, xlim inf X n if and only if there exists some m > 0 such that xX n for all n > m. Observe that xlim sup X n if and only if xlim inf X n c.

  3. Fatou–Lebesgue theorem - Wikipedia

    en.wikipedia.org/wiki/Fatou–Lebesgue_theorem

    Let f 1, f 2, ... denote a sequence of real-valued measurable functions defined on a measure space (S,Σ,μ).If there exists a Lebesgue-integrable function g on S which dominates the sequence in absolute value, meaning that |f n | ≤ g for all natural numbers n, then all f n as well as the limit inferior and the limit superior of the f n are integrable and

  4. Set-theoretic limit - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_limit

    In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...

  5. Extremal orders of an arithmetic function - Wikipedia

    en.wikipedia.org/wiki/Extremal_orders_of_an...

    For the number of divisors function d(n) we have the trivial lower bound 2 ≤ d(n), in which equality occurs when n is prime, so 2 is a minimal order. For ln d(n) we have a maximal order ln 2 ln n / ln ln n, proved by Wigert in 1907. [1]: 82 [2]: Theorem 317 For the number of distinct prime factors ω(n) we have a trivial lower bound 1 ≤ ω ...

  6. Mosco convergence - Wikipedia

    en.wikipedia.org/wiki/Mosco_convergence

    Let X be a topological vector space and let X ∗ denote the dual space of continuous linear functionals on X. Let F n : X → [0, +∞] be functionals on X for each n = 1, 2, ... The sequence (or, more generally, net) (F n) is said to Mosco converge to another functional F : X → [0, +∞] if the following two conditions hold:

  7. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    () (using x ≥ 0 to obtain the final inequality) so that: = One must use lim sup because it is not known if t n converges. For the other inequality, by the above expression for t n , if 2 ≤ m ≤ n , we have: 1 + x + x 2 2 !

  8. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    The supremum (abbreviated sup; pl.: suprema) of a subset of a partially ordered set is the least element in that is greater than or equal to each element of , if such an element exists. [1] If the supremum of S {\displaystyle S} exists, it is unique, and if b is an upper bound of S {\displaystyle S} , then the supremum of S {\displaystyle S} is ...

  9. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in Xx 0 which converges ...