When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Wolfgang Pauli - Wikipedia

    en.wikipedia.org/wiki/Wolfgang_Pauli

    Pauli introduced the 2×2 Pauli matrices as a basis of spin operators, thus solving the nonrelativistic theory of spin. This work, including the Pauli equation , is sometimes said to have influenced Paul Dirac in his creation of the Dirac equation for the relativistic electron, though Dirac said that he invented these same matrices himself ...

  4. Matrix mechanics - Wikipedia

    en.wikipedia.org/wiki/Matrix_mechanics

    Before matrix mechanics, the old quantum theory described the motion of a particle by a classical orbit, with well defined position and momentum X(t), P(t), with the restriction that the time integral over one period T of the momentum times the velocity must be a positive integer multiple of the Planck constant = =.

  5. Pauli exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Pauli_exclusion_principle

    However, stability of large systems with many electrons and many nucleons is a different question, and requires the Pauli exclusion principle. [15] It has been shown that the Pauli exclusion principle is responsible for the fact that ordinary bulk matter is stable and occupies volume.

  6. Pauli group - Wikipedia

    en.wikipedia.org/wiki/Pauli_group

    The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...

  7. Relativistic wave equations - Wikipedia

    en.wikipedia.org/wiki/Relativistic_wave_equations

    The matrices α and β are infinite-dimensional matrices, related to infinitesimal Lorentz transformations. He did not demand that each component of 3B satisfy equation ; instead he regenerated the equation using a Lorentz-invariant action, via the principle of least action, and application of Lorentz group theory. [4] [5]

  8. Two-state quantum system - Wikipedia

    en.wikipedia.org/wiki/Two-state_quantum_system

    The matrix is the 2×2 identity matrix and the matrices with =,, are the Pauli matrices. This decomposition simplifies the analysis of the system, especially in the time-independent case, where the values of α , β , γ {\displaystyle \alpha ,\beta ,\gamma } and δ {\displaystyle \delta } are constants.

  9. Clifford group - Wikipedia

    en.wikipedia.org/wiki/Clifford_group

    The Clifford group is defined as the group of unitaries that normalize the Pauli group: = {† =}. Under this definition, C n {\displaystyle \mathbf {C} _{n}} is infinite, since it contains all unitaries of the form e i θ I {\displaystyle e^{i\theta }I} for a real number θ {\displaystyle \theta } and the identity matrix I {\displaystyle I ...