When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency

  3. Convection–diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Convection–diffusion...

    The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...

  4. Dispersive mass transfer - Wikipedia

    en.wikipedia.org/wiki/Dispersive_mass_transfer

    Dispersive mass flux is analogous to diffusion, and it can also be described using Fick's first law: J = − E d c d x , {\displaystyle J=-E{\frac {dc}{dx}},} where c is mass concentration of the species being dispersed, E is the dispersion coefficient, and x is the position in the direction of the concentration gradient.

  5. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  6. Fluctuation–dissipation theorem - Wikipedia

    en.wikipedia.org/wiki/Fluctuation–dissipation...

    Given that a system obeys detailed balance, the theorem is a proof that thermodynamic fluctuations in a physical variable predict the response quantified by the admittance or impedance (in their general sense, not only in electromagnetic terms) of the same physical variable (like voltage, temperature difference, etc.), and vice versa.

  7. Einstein relation (kinetic theory) - Wikipedia

    en.wikipedia.org/wiki/Einstein_relation_(kinetic...

    An example assuming a parabolic dispersion relation for the density of states and the Maxwell–Boltzmann statistics, which is often used to describe inorganic semiconductor materials, one can compute (see density of states): =, where is the total density of available energy states, which gives the simplified relation: =.

  8. Diffusion equation - Wikipedia

    en.wikipedia.org/wiki/Diffusion_equation

    The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).

  9. Mass diffusivity - Wikipedia

    en.wikipedia.org/wiki/Mass_diffusivity

    The higher the diffusivity (of one substance with respect to another), the faster they diffuse into each other. Typically, a compound's diffusion coefficient is ~10,000× as great in air as in water. Carbon dioxide in air has a diffusion coefficient of 16 mm 2 /s, and in water its diffusion coefficient is 0.0016 mm 2 /s. [1] [2]