When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    In statistics, multicollinearity or collinearity is a situation where the predictors in a regression model are linearly dependent. Perfect multicollinearity refers to a situation where the predictive variables have an exact linear relationship.

  3. Variance inflation factor - Wikipedia

    en.wikipedia.org/wiki/Variance_inflation_factor

    The VIF provides an index that measures how much the variance (the square of the estimate's standard deviation) of an estimated regression coefficient is increased because of collinearity. Cuthbert Daniel claims to have invented the concept behind the variance inflation factor, but did not come up with the name. [2]

  4. Correlation clustering - Wikipedia

    en.wikipedia.org/wiki/Correlation_clustering

    Correlation clustering also relates to a different task, where correlations among attributes of feature vectors in a high-dimensional space are assumed to exist guiding the clustering process. These correlations may be different in different clusters, thus a global decorrelation cannot reduce this to traditional (uncorrelated) clustering.

  5. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    Ridge regression is a method of estimating the coefficients of multiple-regression models in scenarios where the independent variables are highly correlated. [1] It has been used in many fields including econometrics, chemistry, and engineering. [2]

  6. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.

  7. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  8. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    In machine learning, this technique is also known as spectral regression. Clearly, kernel PCR has a discrete shrinkage effect on the eigenvectors of K', quite similar to the discrete shrinkage effect of classical PCR on the principal components, as discussed earlier.

  9. Partial least squares regression - Wikipedia

    en.wikipedia.org/wiki/Partial_least_squares...

    Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression; [1] instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...