Search results
Results From The WOW.Com Content Network
Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits. The equations provide a mathematical model for electric, optical, and radio technologies, such ...
Gauss's law. Foundational law of electromagnetism relating electric field and charge distributions. Gauss's law in its integral form is particularly useful when, by symmetry reasons, a closed surface (GS) can be found along which the electric field is uniform. The electric flux is then a simple product of the surface area and the strength of ...
Coulomb's inverse-square law, or simply Coulomb's law, is an experimental law [1] of physics that calculates the amount of force between two electrically charged particles at rest. This electric force is conventionally called the electrostatic force or Coulomb force. [2] Although the law was known earlier, it was first published in 1785 by ...
An electric field (sometimes called E-field[1]) is the physical field that surrounds electrically charged particles. Charged particles exert attractive forces on each other when their charges are opposite, and repulse each other when their charges are the same. Because these forces are exerted mutually, two charges must be present for the ...
t. e. In physics, specifically electromagnetism, the Biot–Savart law (/ ˈbiːoʊ səˈvɑːr / or / ˈbjoʊ səˈvɑːr /) [1] is an equation describing the magnetic field generated by a constant electric current. It relates the magnetic field to the magnitude, direction, length, and proximity of the electric current. The Biot–Savart law ...
The intensity of the electric field for this gap is therefore 3.4 MV/m. The electric field needed to arc across the minimal-voltage gap is much greater than what is necessary to arc a gap of one metre. At large gaps (or large pd) Paschen's Law is known to fail. The Meek Criteria for breakdown is usually used for large gaps.
Poynting vector in a static field, where E is the electric field, H the magnetic field, and S the Poynting vector. The consideration of the Poynting vector in static fields shows the relativistic nature of the Maxwell equations and allows a better understanding of the magnetic component of the Lorentz force , q ( v × B ) .
In physics, field strength is the magnitude of a vector -valued field (e.g., in volts per meter, V/m, for an electric field E). [1] For example, an electromagnetic field has both electric field strength and magnetic field strength. As an application, in radio frequency telecommunications, the signal strength excites a receiving antenna and ...