When.com Web Search

  1. Ad

    related to: cauchy schwarz inequality expectation test example questions

Search results

  1. Results From The WOW.Com Content Network
  2. Cauchy–Schwarz inequality - Wikipedia

    en.wikipedia.org/wiki/CauchySchwarz_inequality

    CauchySchwarz inequality (Modified Schwarz inequality for 2-positive maps [27]) — For a 2-positive map between C*-algebras, for all , in its domain, () ‖ ‖ (), ‖ ‖ ‖ ‖ ‖ ‖. Another generalization is a refinement obtained by interpolating between both sides of the CauchySchwarz inequality:

  3. QM-AM-GM-HM inequalities - Wikipedia

    en.wikipedia.org/wiki/QM-AM-GM-HM_Inequalities

    There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the CauchySchwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.

  4. Second moment method - Wikipedia

    en.wikipedia.org/wiki/Second_moment_method

    The Paley–Zygmund inequality is sometimes used instead of the CauchySchwarz inequality and may occasionally give more refined results. Under the (incorrect) assumption that the events v , u in K are always independent, one has Pr ( v , u ∈ K ) = Pr ( v ∈ K ) Pr ( u ∈ K ) {\displaystyle \Pr(v,u\in K)=\Pr(v\in K)\,\Pr(u\in K)} , and ...

  5. Rearrangement inequality - Wikipedia

    en.wikipedia.org/wiki/Rearrangement_inequality

    Many important inequalities can be proved by the rearrangement inequality, such as the arithmetic mean – geometric mean inequality, the CauchySchwarz inequality, and Chebyshev's sum inequality. As a simple example, consider real numbers : By applying with := for all =, …,, it follows that + + + + + + for every permutation of , …,.

  6. Titu's lemma - Wikipedia

    en.wikipedia.org/wiki/Titu's_Lemma

    In mathematics, the following inequality is known as Titu's lemma, Bergström's inequality, Engel's form or Sedrakyan's inequality, respectively, referring to the article About the applications of one useful inequality of Nairi Sedrakyan published in 1997, [1] to the book Problem-solving strategies of Arthur Engel published in 1998 and to the book Mathematical Olympiad Treasures of Titu ...

  7. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    When , is a real number then the CauchySchwarz inequality implies that , ‖ ‖ ‖ ‖ [,], and thus that (,) = ⁡ , ‖ ‖ ‖ ‖, is a real number. This allows defining the (non oriented) angle of two vectors in modern definitions of Euclidean geometry in terms of linear algebra .

  8. Cauchy's estimate - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_estimate

    In mathematics, specifically in complex analysis, Cauchy's estimate gives local bounds for the derivatives of a holomorphic function. These bounds are optimal. These bounds are optimal. Cauchy's estimate is also called Cauchy's inequality , but must not be confused with the CauchySchwarz inequality .

  9. Hilbert C*-module - Wikipedia

    en.wikipedia.org/wiki/Hilbert_C*-module

    The CauchySchwarz inequality implies the inner product is jointly continuous in norm and can therefore be extended to the completion. The action of A {\displaystyle A} on E {\displaystyle E} is continuous: for all x {\displaystyle x} in E {\displaystyle E}