Search results
Results From The WOW.Com Content Network
However, these cells did not self-renew and were subsequently depleted as they generated new neurons, thus failing to satisfy the requirement for stem cells. [6] [7] One study observed that ependymal cells from the lining of the lateral ventricle might be a source for cells which can be transplanted into the cochlea to reverse hearing loss. [8]
As the cells grow, the neurite tangle remains centrally located and the cell bodies are squeezed to the periphery, thus explaining the rosette pattern. Depending upon their location, ependymal cells may display 2 cell poles. A luminal pole projects to the ependymal lining of a ventricle and a "submesenchymal pole" projects toward the surface of ...
Oligodendrocytes are a type of glial cell, non-neuronal cells in the central nervous system.They arise during development from oligodendrocyte precursor cells (OPCs), [8] which can be identified by their expression of a number of antigens, including the ganglioside GD3, [9] [10] [11] the NG2 chondroitin sulfate proteoglycan, and the platelet-derived growth factor-alpha receptor subunit (PDGF ...
This schematic illustrates the four different types of glial cells, all of which possess cytoplasmic processes: ependymal cells (light pink), astrocytes (green), microglia (red), and oligodendrocytes (light blue). Cell bodies of neurons are in yellow (Their axons are surrounded by myelin, produced by oligodendrocytes).
The lightly stained columns projecting toward the center are the apical extensions of the ependymal cells. The posterior commissure is at the top of the photo, and the space below the SCO is part of the third ventricle, which is lined with ependymal cells. Cell nuclei are stained blue. The scale bar = 50 microns (0.05 mm).
From Wikipedia, the free encyclopedia. Redirect page
Tanycytes are highly specialized ependymal cells found in the third ventricle of the brain, and on the floor of the fourth ventricle. Each tanycyte has a long basal process that extends deep into the hypothalamus. It is possible that their function is to transfer chemical signals from the cerebrospinal fluid to the central nervous system.
The tela choroidea is a very thin part of the loose connective tissue of pia mater overlying and closely adhering to the ependyma. [ 2 ] [ 1 ] It has a rich blood supply. The ependyma and vascular pia mater – the tela choroidea, form regions of minute projections known as a choroid plexus that projects into each ventricle.