When.com Web Search

  1. Ads

    related to: earth radius to solar panel square

Search results

  1. Results From The WOW.Com Content Network
  2. Solar irradiance - Wikipedia

    en.wikipedia.org/wiki/Solar_irradiance

    This represents the power per unit area of solar irradiance across the spherical surface surrounding the Sun with a radius equal to the distance to the Earth (1 AU). This means that the approximately circular disc of the Earth, as viewed from the Sun, receives a roughly stable 1361 W/m 2 at all times.

  3. Solar constant - Wikipedia

    en.wikipedia.org/wiki/Solar_constant

    This is because the solar constant is evaluated at a fixed distance of 1 Astronomical Unit (au) while the solar irradiance will be affected by the eccentricity of the Earth's orbit. Its distance to the Sun varies annually between 147.1·10 6 km at perihelion and 152.1·10 6 km at aphelion .

  4. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).

  5. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    At Earth, this energy is passing through a sphere with a radius of a 0, the distance between the Earth and the Sun, and the irradiance (received power per unit area) is given by = The Earth has a radius of R ⊕ , and therefore has a cross-section of π R ⊕ 2 {\displaystyle \pi R_{\oplus }^{2}} .

  6. Earth's energy budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_energy_budget

    Of the ~340 W/m 2 of solar radiation received by the Earth, an average of ~77 W/m 2 is reflected back to space by clouds and the atmosphere and ~23 W/m 2 is reflected by the surface albedo, leaving ~240 W/m 2 of solar energy input to the Earth's energy budget. This amount is called the absorbed solar radiation (ASR).

  7. Surface power density - Wikipedia

    en.wikipedia.org/wiki/Surface_power_density

    where Pd is the power density in watts per square meter (one W/m 2 is equal to 0.1 mW/cm 2), H 2 = the square of the value of the magnetic field in amperes RMS squared per meter squared, E 2 = the square of the value of the electric field in volts RMS squared per meter squared. [6]

  8. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Solar radiation pressure on objects near the Earth may be calculated using the Sun's irradiance at 1 AU, known as the solar constant, or G SC, whose value is set at 1361 W/m 2 as of 2011. [17] All stars have a spectral energy distribution that depends on their surface temperature. The distribution is approximately that of black-body radiation.

  9. Radiative forcing - Wikipedia

    en.wikipedia.org/wiki/Radiative_forcing

    The intensity of solar irradiance including all wavelengths is the Total Solar Irradiance (TSI) and on average is the solar constant. It is equal to about 1361 W m −2 at the distance of Earth's annual-mean orbital radius of one astronomical unit and as measured at the top of the atmosphere. [ 43 ]