Search results
Results From The WOW.Com Content Network
The procedures of Bonferroni and Holm control the FWER under any dependence structure of the p-values (or equivalently the individual test statistics). Essentially, this is achieved by accommodating a `worst-case' dependence structure (which is close to independence for most practical purposes).
Tukey’s Test (see also: Studentized Range Distribution) However, with the exception of Scheffès Method, these tests should be specified "a priori" despite being called "post-hoc" in conventional usage. For example, a difference between means could be significant with the Holm-Bonferroni method but not with the Turkey Test and vice versa.
However, the studentized range distribution used to determine the level of significance of the differences considered in Tukey's test has vastly broader application: It is useful for researchers who have searched their collected data for remarkable differences between groups, but then cannot validly determine how significant their discovered ...
For example, for = 0.05 and m = 10, the Bonferroni-adjusted level is 0.005 and the Šidák-adjusted level is approximately 0.005116. One can also compute confidence intervals matching the test decision using the Šidák correction by computing each confidence interval at the ⋅ {\displaystyle \cdot } (1 − α) 1/ m % level.
With respect to FWER control, the Bonferroni correction can be conservative if there are a large number of tests and/or the test statistics are positively correlated. [9] Multiple-testing corrections, including the Bonferroni procedure, increase the probability of Type II errors when null hypotheses are false, i.e., they reduce statistical power.
Thus, The Hochberg procedure is uniformly more powerful than the Holm procedure. However, the Hochberg procedure requires the hypotheses to be independent or under certain forms of positive dependence, whereas Holm–Bonferroni can be applied without such assumptions. A similar step-up procedure is the Hommel procedure, which is uniformly more ...
The problem of multiple comparisons received increased attention in the 1950s with the work of statisticians such as Tukey and Scheffé. Over the ensuing decades, many procedures were developed to address the problem. In 1996, the first international conference on multiple comparison procedures took place in Tel Aviv. [3]
The Newman–Keuls method is similar to Tukey's range test as both procedures use studentized range statistics. [5] [6] Unlike Tukey's range test, the Newman–Keuls method uses different critical values for different pairs of mean comparisons. Thus, the procedure is more likely to reveal significant differences between group means and to ...