When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    This allows the two congruent purple-outline triangles and to be constructed, each with hypotenuse ⁡ and angle at their base. The sum of the heights of the red and blue triangles is sin ⁡ θ + sin ⁡ φ {\displaystyle \sin \theta +\sin \varphi } , and this is equal to twice the height of one purple triangle, i.e. 2 sin ⁡ p cos ⁡ q ...

  3. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Illustration of the sum formula. Draw a horizontal line (the x -axis); mark an origin O. Draw a line from O at an angle α {\displaystyle \alpha } above the horizontal line and a second line at an angle β {\displaystyle \beta } above that; the angle between the second line and the x -axis is α + β . {\displaystyle \alpha +\beta .}

  4. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The sum and difference formulas allow expanding the sine, the cosine, and the tangent of a sum or a difference of two angles in terms of sines and cosines and tangents of the angles themselves. These can be derived geometrically, using arguments that date to Ptolemy. One can also produce them algebraically using Euler's formula. Sum

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...

  7. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The angles of proper spherical triangles are (by convention) less than π, so that < + + < (Todhunter, [1] Art.22,32). In particular, the sum of the angles of a spherical triangle is strictly greater than the sum of the angles of a triangle defined on the Euclidean plane, which is always exactly π radians.

  8. Mnemonics in trigonometry - Wikipedia

    en.wikipedia.org/wiki/Mnemonics_in_trigonometry

    The sum of the squares of the two items at the top of a triangle equals the square of the item at the bottom. These are the trigonometric Pythagorean identities . sin 2 ⁡ A + cos 2 ⁡ A = 1 2 = 1 {\displaystyle \sin ^{2}A+\cos ^{2}A=1^{2}=1\ }

  9. Sum of angles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Sum_of_angles_of_a_triangle

    In addition, the sum of angles is not 180° anymore. For a spherical triangle, the sum of the angles is greater than 180° and can be up to 540°. The amount by which the sum of the angles exceeds 180° is called the spherical excess, denoted as or . [4]