Search results
Results From The WOW.Com Content Network
In mathematical logic, a propositional variable (also called a sentence letter, [1] sentential variable, or sentential letter) is an input variable (that can either be true or false) of a truth function. Propositional variables are the basic building-blocks of propositional formulas, used in propositional logic and higher-order logics.
The predicate calculus goes a step further than the propositional calculus to an "analysis of the inner structure of propositions" [4] It breaks a simple sentence down into two parts (i) its subject (the object (singular or plural) of discourse) and (ii) a predicate (a verb or possibly verb-clause that asserts a quality or attribute of the object(s)).
[2] Lewis used the notion of propositional functions to introduce relations, for example, a propositional function of n variables is a relation of arity n. The case of n = 2 corresponds to binary relations, of which there are homogeneous relations (both variables from the same set) and heterogeneous relations.
The following example in first-order logic (=) is a sentence. This sentence means that for every y, there is an x such that =. This sentence is true for positive real numbers, false for real numbers, and true for complex numbers. However, the formula
For the pair a, b there are 2 2 =4 possible interpretations: 1) both are assigned T, 2) both are assigned F, 3) a is assigned T and b is assigned F, or 4) a is assigned F and b is assigned T. Given any truth assignment for a set of propositional symbols, there is a unique extension to an interpretation for all the propositional formulas built ...
A predicate is a statement or mathematical assertion that contains variables, sometimes referred to as predicate variables, and may be true or false depending on those variables’ value or values. In propositional logic, atomic formulas are sometimes regarded as zero-place predicates. [1] In a sense, these are nullary (i.e. 0-arity) predicates.
(The variable in the second clause was renamed to make it clear that variables in different clauses are distinct.) Now, unifying Q(X) in the first clause with ¬Q(Y) in the second clause means that X and Y become the same variable anyway. Substituting this into the remaining clauses and combining them gives the conclusion: ¬P(X) ∨ R(X)
Where ψ and φ represent formulas of propositional logic, ψ is a substitution instance of φ if and only if ψ may be obtained from φ by substituting formulas for propositional variables in φ, replacing each occurrence of the same variable by an occurrence of the same formula. For example: ψ: (R → S) & (T → S) is a substitution ...