When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    The function which takes the value 0 for rational number and 1 for irrational number (cf. Dirichlet function) is bounded. Thus, a function does not need to be "nice" in order to be bounded. The set of all bounded functions defined on [ 0 , 1 ] {\displaystyle [0,1]} is much larger than the set of continuous functions on that interval.

  3. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    If the domain of definition equals X, one often says that the partial function is a total function. In several areas of mathematics the term "function" refers to partial functions rather than to ordinary functions. This is typically the case when functions may be specified in a way that makes difficult or even impossible to determine their domain.

  4. Increment theorem - Wikipedia

    en.wikipedia.org/wiki/Increment_theorem

    In nonstandard analysis, a field of mathematics, the increment theorem states the following: Suppose a function y = f(x) is differentiable at x and that Δx is infinitesimal. Then Δ y = f ′ ( x ) Δ x + ε Δ x {\displaystyle \Delta y=f'(x)\,\Delta x+\varepsilon \,\Delta x} for some infinitesimal ε , where Δ y = f ( x + Δ x ) − f ( x ...

  5. Fast-growing hierarchy - Wikipedia

    en.wikipedia.org/wiki/Fast-growing_hierarchy

    In computability theory, computational complexity theory and proof theory, a fast-growing hierarchy (also called an extended Grzegorczyk hierarchy, or a Schwichtenberg-Wainer hierarchy) [1] is an ordinal-indexed family of rapidly increasing functions f α: N → N (where N is the set of natural numbers {0, 1, ...}, and α ranges up to some large countable ordinal).

  6. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.

  7. Helly's selection theorem - Wikipedia

    en.wikipedia.org/wiki/Helly's_selection_theorem

    In mathematics, Helly's selection theorem (also called the Helly selection principle) states that a uniformly bounded sequence of monotone real functions admits a convergent subsequence. In other words, it is a sequential compactness theorem for the space of uniformly bounded monotone functions. It is named for the Austrian mathematician Eduard ...

  8. Supermodular function - Wikipedia

    en.wikipedia.org/wiki/Supermodular_function

    In mathematics, a supermodular function is a function on a lattice that, informally, has the property of being characterized by "increasing differences." Seen from the point of set functions , this can also be viewed as a relationship of "increasing returns", where adding more elements to a subset increases its valuation.

  9. Monotonic function - Wikipedia

    en.wikipedia.org/wiki/Monotonic_function

    In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. [ 1 ] [ 2 ] [ 3 ] This concept first arose in calculus , and was later generalized to the more abstract setting of order theory .