Search results
Results From The WOW.Com Content Network
Any complete graph is a core. A cycle of odd length is a core. A graph is a core if and only if the core of is equal to . Every two cycles of even length, and more generally every two bipartite graphs are hom-equivalent. The core of each of these graphs is the two-vertex complete graph K 2.
In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has at least one vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate.
The converse graph is a synonym for the transpose graph; see transpose. core 1. A k-core is the induced subgraph formed by removing all vertices of degree less than k, and all vertices whose degree becomes less than k after earlier removals. See degeneracy. 2. A core is a graph G such that every graph homomorphism from G to itself is an ...
The complete graph on n vertices is denoted by K n.Some sources claim that the letter K in this notation stands for the German word komplett, [4] but the German name for a complete graph, vollständiger Graph, does not contain the letter K, and other sources state that the notation honors the contributions of Kazimierz Kuratowski to graph theory.
The complete bipartite graph K m,n has a vertex covering number of min{m, n} and an edge covering number of max{m, n}. The complete bipartite graph K m,n has a maximum independent set of size max{m, n}. The adjacency matrix of a complete bipartite graph K m,n has eigenvalues √ nm, − √ nm and 0; with multiplicity 1, 1 and n + m − 2 ...
However, the same definitions apply to directed graphs and a directed graph is also equivalent to a unique core. Every graph and every directed graph contains its core as a retract and as an induced subgraph. [7] For example, all complete graphs K n and all odd cycles (cycle graphs of odd length) are cores.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A graph is planar if it contains as a subdivision neither the complete bipartite graph K 3,3 nor the complete graph K 5. Another problem in subdivision containment is the Kelmans–Seymour conjecture: Every 5-vertex-connected graph that is not planar contains a subdivision of the 5-vertex complete graph K 5.