Search results
Results From The WOW.Com Content Network
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
Thomae's function: is a function that is continuous at all irrational numbers and discontinuous at all rational numbers. It is also a modification of Dirichlet function and sometimes called Riemann function. Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise.
Graph of a linear function Graph of a polynomial function, here a quadratic function. Graph of two trigonometric functions: sine and cosine. A real function is a real-valued function of a real variable, that is, a function whose codomain is the field of real numbers and whose domain is a set of real numbers that contains an interval.
The unification of two argument graphs is defined as the most general graph (or the computation thereof) that is consistent with (i.e. contains all of the information in) the inputs, if such a graph exists; efficient unification algorithms are known.
A path graph or linear graph of order n ≥ 2 is a graph in which the vertices can be listed in an order v 1, v 2, …, v n such that the edges are the {v i, v i+1} where i = 1, 2, …, n − 1. Path graphs can be characterized as connected graphs in which the degree of all but two vertices is 2 and the degree of the two remaining vertices is 1.
Hypercomplex function: a function whose domain is hypercomplex (e.g. quaternions, octonions, sedenions, trigintaduonions etc.) p-adic function: a function whose domain is p-adic. Linear function; also affine function. Convex function: line segment between any two points on the graph lies above the graph. Also concave function.
Epigraph of a function A function (in black) is convex if and only if the region above its graph (in green) is a convex set.This region is the function's epigraph. In mathematics, the epigraph or supergraph [1] of a function: [,] valued in the extended real numbers [,] = {} is the set = {(,) : ()} consisting of all points in the Cartesian product lying on or above the function's graph. [2]
A differentiable function of one variable is convex on an interval if and only if its graph lies above all of its tangents: [7]: 69 () + ′ () for all and in the interval. A twice differentiable function of one variable is convex on an interval if and only if its second derivative is non-negative there; this gives a practical test for convexity.