When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    Just as the definite integral of a positive function of one variable represents the area of the region between the graph of the function and the x-axis, the double integral of a positive function of two variables represents the volume of the region between the surface defined by the function (on the three-dimensional Cartesian plane where z = f(x, y)) and the plane which contains its domain. [1]

  3. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    Using the "partitioning the range of f" philosophy, the integral of a non-negative function f : R → R should be the sum over t of the areas between a thin horizontal strip between y = t and y = t + dt. This area is just μ{ x : f(x) > t} dt. Let f ∗ (t) = μ{ x : f(x) > t}. The Lebesgue integral of f is then defined by

  4. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely and and then integrated. This technique is often simpler and faster than using trigonometric identities or integration by parts , and is sufficiently powerful to integrate any rational expression involving trigonometric functions.

  5. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    In particular, this explains use of integration by parts to integrate logarithm and inverse trigonometric functions. In fact, if f {\displaystyle f} is a differentiable one-to-one function on an interval, then integration by parts can be used to derive a formula for the integral of f − 1 {\displaystyle f^{-1}} in terms of the integral of f ...

  6. Fresnel integral - Wikipedia

    en.wikipedia.org/wiki/Fresnel_integral

    The sector contour used to calculate the limits of the Fresnel integrals. This can be derived with any one of several methods. One of them [5] uses a contour integral of the function around the boundary of the sector-shaped region in the complex plane formed by the positive x-axis, the bisector of the first quadrant y = x with x ≥ 0, and a circular arc of radius R centered at the origin.

  7. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral.The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for "numerical integration", especially as applied to one-dimensional integrals.

  8. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    In order to evaluate real integrals, the residue theorem is used in the following manner: the integrand is extended to the complex plane and its residues are computed (which is usually easy), and a part of the real axis is extended to a closed curve by attaching a half-circle in the upper or lower half-plane, forming a semicircle.

  9. Contour integration - Wikipedia

    en.wikipedia.org/wiki/Contour_integration

    One use for contour integrals is the evaluation of integrals along the real line that are not readily found by using only real variable methods. [5] Contour integration methods include: direct integration of a complex-valued function along a curve in the complex plane; application of the Cauchy integral formula; and; application of the residue ...