Search results
Results From The WOW.Com Content Network
The development of atomic clocks has led to many scientific and technological advances such as precise global and regional navigation satellite systems, and applications in the Internet, which depend critically on frequency and time standards. Atomic clocks are installed at sites of time signal radio transmitters. [113]
Toggle the table of contents. List of atomic clocks. ... This is a list of some experimental laboratory atomic clocks worldwide. ... Image CS1 [1] 1969 Cs 7 × 10 − ...
The caesium atomic clock maintained by NIST is accurate to 30 billionths of a second per year. [206] Atomic clocks have employed other elements, such as hydrogen and rubidium vapor, offering greater stability (in the case of hydrogen clocks) and smaller size, lower power consumption, and thus lower cost (in the case of rubidium clocks). [206]
NIST-F1 is a cesium fountain clock, a type of atomic clock, in the National Institute of Standards and Technology (NIST) in Boulder, Colorado, and serves as the United States' primary time and frequency standard. The clock took fewer than four years to test and build, and was developed by Steve Jefferts and Dawn Meekhof of the Time and ...
NIST-7 was the atomic clock used by the United States from 1993 to 1999. It was one of a series of Atomic Clocks [ 1 ] at the National Institute of Standards and Technology . Eventually, it achieved an uncertainty of 5 × 10 −15 .
The United States Naval Observatory began the A.1 scale on 13 September 1956, using an Atomichron commercial atomic clock, followed by the NBS-A scale at the National Bureau of Standards, Boulder, Colorado on 9 October 1957. [9] The International Time Bureau (BIH) began a time scale, T m or AM, in July 1955, using both local caesium clocks and ...
List of UTC timing centers is a list of over 70 recognized maintainers of atomic clocks around the world from which UTC is calculated. [1] Below are links to some of the more notable time centers which contribute to the calculation of UTC.
Standard-quality 32 768 Hz resonators of this type are warranted to have a long-term accuracy of about six parts per million (0.0006%) at 31 °C (87.8 °F): that is, a typical quartz clock or wristwatch will gain or lose 15 seconds per 30 days (within a normal temperature range of 5 to 35 °C or 41 to 95 °F) or less than a half second clock ...