Ads
related to: how does radiation kills cancer cellscancer.osu.edu has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Radiation hormesis is the conjecture that a low level of ionizing radiation (i.e., near the level of Earth's natural background radiation) helps "immunize" cells against DNA damage from other causes (such as free radicals or larger doses of ionizing radiation), and decreases the risk of cancer. The theory proposes that such low levels activate ...
Due to its ability to induce cell cycle arrest, ionizing radiation is used on abnormal growths in the human body such as cancer cells, in radiation therapy. Most cancer cells are fully treated with some type of radiotherapy, however some cells such as stem cell cancer cells show a reoccurrence when treated by this type of therapy. [1]
Acute radiation syndrome (ARS), also known as radiation sickness or radiation poisoning, is a collection of health effects that are caused by being exposed to high amounts of ionizing radiation in a short period of time. [1] Symptoms can start within an hour of exposure, and can last for several months.
Radiation therapy or radiotherapy (RT, RTx, or XRT) is a treatment using ionizing radiation, generally provided as part of cancer therapy to either kill or control the growth of malignant cells. It is normally delivered by a linear particle accelerator .
Radiation used for cancer treatment is called ionizing radiation because it forms ions in the cells of the tissues it passes through as it dislodges electrons from atoms. This can kill cells or change genes so the cells cannot grow. Other forms of radiation such as radio waves, microwaves, and light waves are called non-ionizing.
Each component in itself is non-tumoricidal, but when combined they can be highly lethal to cancer cells. 1) Boron compound (b) is selectively absorbed by cancer cell(s). 2) Neutron beam (n) is aimed at cancer site. 3) Boron absorbs neutron. 4) Boron disintegrates emitting cancer-killing radiation.