When.com Web Search

  1. Ads

    related to: solving spherical triangles formula worksheet 1 pdf printable pages

Search results

  1. Results From The WOW.Com Content Network
  2. Half-side formula - Wikipedia

    en.wikipedia.org/wiki/Half-side_formula

    In spherical trigonometry, the half side formula relates the angles and lengths of the sides of spherical triangles, which are triangles drawn on the surface of a sphere and so have curved sides and do not obey the formulas for plane triangles. [1] For a triangle on a sphere, the half-side formula is [2] ⁡ = ⁡ ⁡ ⁡ ⁡ ()

  3. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    If the law of cosines is used to solve for c, the necessity of inverting the cosine magnifies rounding errors when c is small. In this case, the alternative formulation of the law of haversines is preferable. [3] A variation on the law of cosines, the second spherical law of cosines, [4] (also called the cosine rule for angles [1]) states:

  4. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    For the spherical case, one can first compute the length of side from the point at α to the ship (i.e. the side opposite to β) via the ASA formula ⁡ = ⁡ ⁡ ⁡ (+) + ⁡ ⁡ (), and insert this into the AAS formula for the right subtriangle that contains the angle α and the sides b and d: ⁡ = ⁡ ⁡ = ⁡ + ⁡ ⁡. (The planar ...

  5. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The angles of proper spherical triangles are (by convention) less than π, so that < + + < (Todhunter, [1] Art.22,32). In particular, the sum of the angles of a spherical triangle is strictly greater than the sum of the angles of a triangle defined on the Euclidean plane, which is always exactly π radians.

  6. Legendre's theorem on spherical triangles - Wikipedia

    en.wikipedia.org/wiki/Legendre's_theorem_on...

    The excess, or area, of small triangles is very small. For example, consider an equilateral spherical triangle with sides of 60 km on a spherical Earth of radius 6371 km; the side corresponds to an angular distance of 60/6371=.0094, or approximately 10 −2 radians (subtending an angle of 0.57

  7. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    An area formula for spherical triangles analogous to the formula for planar triangles. Given a fixed base , an arc of a great circle on a sphere, and two apex points and on the same side of great circle , Lexell's theorem holds that the surface area of the spherical triangle is equal to that of if and only if lies on the small-circle arc , where and are the points antipodal to and , respectively.