When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tangent vector - Wikipedia

    en.wikipedia.org/wiki/Tangent_vector

    In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...

  3. Tangential and normal components - Wikipedia

    en.wikipedia.org/wiki/Tangential_and_normal...

    In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector. Similarly, a vector at a point on a surface can be broken down the ...

  4. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    T is the unit vector tangent to the curve, pointing in the direction of motion. N is the normal unit vector, the derivative of T with respect to the arclength parameter of the curve, divided by its length. B is the binormal unit vector, the cross product of T and N.

  5. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    The tangent vector's magnitude ‖ ′ ‖ is the speed at the time t 0. The first Frenet vector e 1 (t) is the unit tangent vector in the same direction, defined at each regular point of γ: = ′ ‖ ′ ‖.

  6. Tangent space - Wikipedia

    en.wikipedia.org/wiki/Tangent_space

    A vector field attaches to every point of the manifold a vector from the tangent space at that point, in a smooth manner. Such a vector field serves to define a generalized ordinary differential equation on a manifold: A solution to such a differential equation is a differentiable curve on the manifold whose derivative at any point is equal to ...

  7. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N. It lies in the osculating plane, the plane spanned by the tangent and principal normal vectors T and N at the point P.

  8. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    In mathematics, a tangent vector is a vector that is tangent to a curve or surface at a given point. Tangent vectors are described in the differential geometry of curves in the context of curves in R n. More generally, tangent vectors are elements of a tangent space of a differentiable manifold. Tangent vectors can also be described in terms of ...

  9. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    A vector or tangent vector, has components that contra-vary with a change of basis to compensate. That is, the matrix that transforms the vector components must be the inverse of the matrix that transforms the basis vectors. The components of vectors (as opposed to those of covectors) are said to be contravariant