When.com Web Search

  1. Ad

    related to: how to calculate concrete yardage for a radius of 2 x 5 1 2

Search results

  1. Results From The WOW.Com Content Network
  2. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Another generalization is to calculate the number of coprime integer solutions , to the inequality m 2 + n 2 ≤ r 2 . {\displaystyle m^{2}+n^{2}\leq r^{2}.\,} This problem is known as the primitive circle problem , as it involves searching for primitive solutions to the original circle problem. [ 9 ]

  3. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    as one would expect. This is equivalent to the above definition of the 2D mean diameter. However, for historical reasons, the hydraulic radius is defined as the cross-sectional area of a pipe A, divided by its wetted perimeter P, which leads to =, and the hydraulic radius is half of the 2D mean radius. [3]

  4. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  5. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof. [1] [2] [3]

  6. Circle packing in a square - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_square

    Solutions (not necessarily optimal) have been computed for every N ≤ 10,000. [2] Solutions up to N = 20 are shown below. [2] The obvious square packing is optimal for 1, 4, 9, 16, 25, and 36 circles (the six smallest square numbers), but ceases to be optimal for larger squares from 49 onwards. [2]

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    Apollonius' definition of a circle: d 1 /d 2 constant. Apollonius of Perga showed that a circle may also be defined as the set of points in a plane having a constant ratio (other than 1) of distances to two fixed foci, A and B. [16] [17] (The set of points where the distances are equal is the perpendicular bisector of segment AB, a line.)

  8. Dimensional analysis - Wikipedia

    en.wikipedia.org/wiki/Dimensional_analysis

    By assuming a form of Coulomb's law in which the Coulomb constant k e is taken as unity, Maxwell then determined that the dimensions of an electrostatic unit of charge were Q = T −1 L 3/2 M 1/2, [15] which, after substituting his M = T −2 L 3 equation for mass, results in charge having the same dimensions as mass, viz. Q = T −2 L 3.

  9. Bend radius - Wikipedia

    en.wikipedia.org/wiki/Bend_radius

    Bend radius, which is measured to the inside curvature, is the minimum radius one can bend a pipe, tube, sheet, cable or hose without kinking it, damaging it, or shortening its life. The smaller the bend radius, the greater the material flexibility (as the radius of curvature decreases , the curvature increases ).