When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  3. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    In linear algebra, a symmetric matrix is a square matrix ... geometry, for each tangent ... the product of an orthogonal matrix and a symmetric positive definite ...

  4. Williamson theorem - Wikipedia

    en.wikipedia.org/wiki/Williamson_theorem

    The derivation of the result hinges on a few basic observations: The real matrix / /, with (), is well-defined and skew-symmetric.; Any skew-symmetric real matrix can be block-diagonalized via orthogonal real matrices, meaning there is () such that = with a real positive-definite diagonal matrix containing the singular values of .

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A symmetric matrix is positive-definite if and only if all its eigenvalues are positive, that is, the matrix is positive-semidefinite and it is invertible. [31] The table at the right shows two possibilities for 2-by-2 matrices.

  6. Sylvester's criterion - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_criterion

    In mathematics, Sylvester’s criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix is positive-definite. Sylvester's criterion states that a n × n Hermitian matrix M is positive-definite if and only if all the following matrices have a positive determinant: the upper left 1-by-1 corner of M,

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential of a real symmetric matrix is positive definite. Let be an n×n real symmetric matrix and a column vector. Using the elementary properties of the matrix exponential and of symmetric matrices, we have:

  8. Wilson matrix - Wikipedia

    en.wikipedia.org/wiki/Wilson_matrix

    Wilson matrix is the following ... the set of positive definite, symmetric matrices with integer entries between 1 and 10. An exhaustive computation of the condition ...

  9. Totally positive matrix - Wikipedia

    en.wikipedia.org/wiki/Totally_positive_matrix

    A totally positive matrix has all entries positive, so it is also a positive matrix; and it has all principal minors positive (and positive eigenvalues). A symmetric totally positive matrix is therefore also positive-definite. A totally non-negative matrix is defined similarly, except that all the minors must be non-negative (positive or zero ...