Search results
Results From The WOW.Com Content Network
A sample of thorium. Thorium-based nuclear power generation is fueled primarily by the nuclear fission of the isotope uranium-233 produced from the fertile element thorium.A thorium fuel cycle can offer several potential advantages over a uranium fuel cycle [Note 1] —including the much greater abundance of thorium found on Earth, superior physical and nuclear fuel properties, and reduced ...
The thorium fuel cycle has several potential advantages over a uranium fuel cycle, including thorium's greater abundance, superior physical and nuclear properties, reduced plutonium and actinide production, [1] and better resistance to nuclear weapons proliferation when used in a traditional light water reactor [1] [2] though not in a molten ...
A two fluid reactor that has thorium in the fuel salt is sometimes called a "one and a half fluid" reactor, or 1.5 fluid reactor. [26] This is a hybrid, with some of the advantages and disadvantages of both 1 fluid and 2 fluid reactors. Like the 1 fluid reactor, it has thorium in the fuel salt, which complicates the fuel processing.
Breeder reactors could, in principle, extract almost all of the energy contained in uranium or thorium, decreasing fuel requirements by a factor of 100 compared to widely used once-through light water reactors, which extract less than 1% of the energy in the actinide metal (uranium or thorium) mined from the earth. [11]
Thorium-232 is a fertile material; it can capture a neutron to form thorium-233, which subsequently undergoes two successive beta decays to uranium-233, which is fissile. As such, it has been used in the thorium fuel cycle in nuclear reactors; various prototype thorium-fueled reactors have been designed. However, as of 2024, thorium fuel has ...
In nuclear power technology, burnup is a measure of how much energy is extracted from a given amount of nuclear fuel. [1] It may be measured as the fraction of fuel atoms that underwent fission in %FIMA (fissions per initial heavy metal atom) [2] or %FIFA (fissions per initial fissile atom) [3] as well as the actual energy released per mass of initial fuel in gigawatt-days/metric ton of heavy ...
It can do closed types and once-through types of fuel cycles. The overall aspect of the AHWR is primed for high burn up with thorium-based fuel (BARC, 2013). Recycled thorium that is recovered from the reactor is then sent back, and plutonium is stored to be later used for a fast breeder reactor. [4]
Transmutations in the thorium fuel cycle. 237 Np: ↑ 231 U: ← 232 U ↔ 233 U ↔ 234 U ↔ 235 U: ↔ 236 U → 237 U: