Search results
Results From The WOW.Com Content Network
The second-order logic without these restrictions is sometimes called full second-order logic to distinguish it from the monadic version. Monadic second-order logic is particularly used in the context of Courcelle's theorem, an algorithmic meta-theorem in graph theory. The MSO theory of the complete infinite binary tree is decidable.
Pages in category "Theorems in graph theory" The following 54 pages are in this category, out of 54 total. ... KÅ‘nig's theorem (graph theory) Kotzig's theorem ...
The satisfiability problem for a sentence of monadic second-order logic is the problem of determining whether there exists at least one graph (possibly within a restricted family of graphs) for which the sentence is true. For arbitrary graph families, and arbitrary sentences, this problem is undecidable.
Graph theory is also widely used in sociology as a way, for example, to measure actors' prestige or to explore rumor spreading, notably through the use of social network analysis software. Under the umbrella of social networks are many different types of graphs. [ 17 ]
In mathematical logic, monadic second-order logic (MSO) is the fragment of second-order logic where the second-order quantification is limited to quantification over sets. [1] It is particularly important in the logic of graphs , because of Courcelle's theorem , which provides algorithms for evaluating monadic second-order formulas over graphs ...
In the mathematical field of graph theory, a complete bipartite graph or biclique is a special kind of bipartite graph where every vertex of the first set is connected to every vertex of the second set. [1] [2] Graph theory itself is typically dated as beginning with Leonhard Euler's 1736 work on the Seven Bridges of Königsberg.
Proof without words that a hypercube graph is non-planar using Kuratowski's or Wagner's theorems and finding either K 5 (top) or K 3,3 (bottom) subgraphs. If is a graph that contains a subgraph that is a subdivision of or ,, then is known as a Kuratowski subgraph of . [1]
Bondy's theorem (graph theory, combinatorics) Bondy–Chvátal theorem (graph theory) Bonnet theorem (differential geometry) Boolean prime ideal theorem (mathematical logic) Borel–Bott–Weil theorem (representation theory) Borel–Carathéodory theorem (complex analysis) Borel–Weil theorem (representation theory) Borel determinacy theorem