Search results
Results From The WOW.Com Content Network
The theorem was discovered by Julius Petersen, a Danish mathematician. It is one of the first results ever discovered in the field of graph theory. The theorem appears first in the 1891 article "Die Theorie der regulären graphs". To prove the theorem, Petersen's fundamental idea was to 'colour' the edges of a trail or a path alternatively red ...
A drawing of a graph with 6 vertices and 7 edges.. In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects.
Pages in category "Theorems in graph theory" The following 54 pages are in this category, out of 54 total. This list may not reflect recent changes. 0–9.
The second-order logic without these restrictions is sometimes called full second-order logic to distinguish it from the monadic version. Monadic second-order logic is particularly used in the context of Courcelle's theorem, an algorithmic meta-theorem in graph theory. The MSO theory of the complete infinite binary tree is decidable.
Kőnig's theorem is equivalent to many other min-max theorems in graph theory and combinatorics, such as Hall's marriage theorem and Dilworth's theorem. Since bipartite matching is a special case of maximum flow, the theorem also results from the max-flow min-cut theorem. [14]
The conjecture was significant, because if true, it would have implied the four color theorem: as Tait described, the four-color problem is equivalent to the problem of finding 3-edge-colorings of bridgeless cubic planar graphs. In a Hamiltonian cubic planar graph, such an edge coloring is easy to find: use two colors alternately on the cycle ...
In the monadic second-order logic of graphs, the variables represent objects of up to four types: vertices, edges, sets of vertices, and sets of edges. There are two main variations of monadic second-order graph logic: MSO 1 in which only vertex and vertex set variables are allowed, and MSO 2 in which all four types of variables are allowed ...
In the mathematical field of graph theory, Kirchhoff's theorem or Kirchhoff's matrix tree theorem named after Gustav Kirchhoff is a theorem about the number of spanning trees in a graph, showing that this number can be computed in polynomial time from the determinant of a submatrix of the graph's Laplacian matrix; specifically, the number is equal to any cofactor of the Laplacian matrix.