Search results
Results From The WOW.Com Content Network
In physics, Dirac cones are features that occur in some electronic band structures that describe unusual electron transport properties of materials like graphene and topological insulators. [ 1 ] [ 2 ] [ 3 ] In these materials, at energies near the Fermi level , the valence band and conduction band take the shape of the upper and lower halves ...
Photonic topological phases are classical electromagnetic wave analogues of electronic topological phases studied in condensed matter physics. Similar to their electronic counterparts, they, can provide robust unidirectional channels for light propagation. [2] The field that studies these phases of light is referred to as topological photonics.
A topological insulator is an insulator for the same reason a "trivial" (ordinary) insulator is: there exists an energy gap between the valence and conduction bands of the material. But in a topological insulator, these bands are, in an informal sense, "twisted", relative to a trivial insulator. [4]
The q-plate with topological charge q can generate a charge vortex based on the input beam polarization. An s-plate is a similar technology to a q-plate, using a high-intensity UV laser to permanently etch a birefringent pattern into silica glass with an azimuthal variation in the fast axis with topological charge of s. Unlike a q-plate, which ...
The topological insulators and superconductors are classified here in ten symmetry classes (A,AII,AI,BDI,D,DIII,AII,CII,C,CI) named after Altland–Zirnbauer classification, defined here by the properties of the system with respect to three operators: the time-reversal operator , charge conjugation and chiral symmetry . The symmetry classes are ...
Another promising method for developing two-dimensional photonic crystals is the so-called photonic crystal slab. These structures consist of a slab of material—such as silicon—that can be patterned using techniques from the semiconductor industry. Such chips offer the potential to combine photonic processing with electronic processing on a ...
Photonic metamaterial SRRs have reached scales below 100 nanometers, using electron beam and nanolithography. One nanoscale SRR cell has three small metallic rods that are physically connected. This is configured as a U shape and functions as a nano-inductor. The gap between the tips of the U-shape function as a nano-capacitor.
In a typical solar cell, the photovoltaic effect is used to generate electricity from sunlight. The light-absorbing or "active layer" of the solar cell is typically a semiconducting material, meaning that there is a gap in its energy spectrum between the valence band of localized electrons around host ions and the conduction band of higher-energy electrons which are free to move throughout the ...